State of Utah DEPARTMENT OF NATURAL RESOURCES MICHAEL R. STYLER Executive Director **Division of Oil Gas and Mining** JOHN R. BAZA Division Director February 28, 2008 TO: Susan White, Mining Program Coordinator Amoo FROM: Beth Ericksen, Mining Engineer Subject: Lisbon Valley Mining Co. Surety Reduction Request, M/037/088 Task # 2206 Lisbon Valley Mining Company (LVMC) has submitted a request for a bond reduction of \$563,132.00. Due to missing data, lack of identified assumptions and explanations, evaluative inconsistencies, and lack of transparency in the final bond estimate spreadsheet received by the Division on Feb. 6, 2008, the requested reduction is not recommended. A general overview of the discrepancies/inconsistencies is outlined as follows: - Bond calculations include missing or inconsistent acreage - Spreadsheet numbers do not 'add up' - No explanation of general or specific assumptions is provided - No explanation of surety calculations is provided in the plan - No approved bond scheme is provided in the plan Due to the lack of demonstrative documentation, the dollar amount of the requested bond reduction cannot be verified. No explanation or outline documentation regarding the surety amount, surety details, or outline of surety plan has been found in the Notice of Intention. Important and necessary detail is lacking or missing in both the final bond estimate and in the current request for bond reduction. It appears LVMC calculated a bond requirement based on an ultimate reclamation scenario as \$10,172,230 in 2009 dollars. The existing surety with the Division is \$6,076,888.00 assumed to be based on current reclamation obligation. LVMC Page 2 of 3 February 28, 2008 Further emphasis substantiating the denial is structured in terms of a scenario. There are several other bond categories that are being ignored in this scenario, with this scenario directed toward the heap/rinse category only. It is determined that heap/rinse is the highest reclamation cost risk based largely on lack of information. The scenario is outlined below: The ultimate reclamation obligation is determined to be \$10,722,230 based on information contained in the LVMC Final Bond Estimate spreadsheet. Due to an assumed bond scheme, the bond obligation is calculated at current reclamation obligation of \$6,076,880.00 as determined by LVMC. According to the LVMC current estimate, there is \$3,005,872.00 committed to heap/rinse work. This amount is 49% of the current reclamation obligation. Looking at the ultimate reclamation bond amount, the heap/rinse work obligation is 58% of the total ultimate surety. With full disturbance for each case, this percentage should be consistent. Assigning 58% of the current reclamation obligation results in a heap/rinse amount of \$3,524,595.00. This increase of \$518,723.00 is less than the requested reduction amount but it is without consideration for unknowns and omissions. Performing a range analysis using a 65th percentile, the dedicated bond for the LVMC current heap/rinse category should be \$4,358,514.00. This scenario alone is enough to deny the request for the surety reduction because of the number of unknowns associated with the heap/rinse. These unknowns include: reclamation details, category specifics, and rinse duration, among others. In the ultimate vs. current case, the difference does not exceed the reduction request amount, however, once increased risk due to uncertainties is conservatively assigned, the required amount increases substantially in just one reclamation category. With all the unknowns and uncertainty revolving around the heap/rinse category, a conservative estimate that includes risk should be established. It is in the best interest of the Division to determine an element of risk associated with each of the surety categories. The presented example was for only one of the five main categories (there are sub-categories as well). To reduce risk factors, resolve inconsistencies, and improve reclamation bond calculation transparency, it will be necessary for the LVMC to satisfactorily identify and explain the full basis and scope of the bond scheme. The bond scheme should be substantially documented in the NOI including identification of category make-up, general and detailed assumptions, and the surety estimate. The operator should be required to provide a much more comprehensive spreadsheet with supporting documentation before any future bond reduction requests are considered by the Division. | disturbance. | | | | | | | | | | | | | | | Anticipate
Complete | Feb 1 Bond Requirement(in 2 | 009 | |--|---------------------|---------------------------------------|--|--|---|---|---|--|--|--|---|--|---|---|------------------------|-----------------------------|--------| | Based on <i>Details of Final Reclamation</i> original estimate prepared by The Winters Group 1997 | | | | | | | | | | | x | . 10 | | | 2008 | Dollars) | | | ACTIVITY | AREA | QUAN | TIT' UNITS | \$/Unit | 1 | 997 \$ Cost | 2004 | \$ Cost | 2006 \$ C | ost 2 | 007 \$ Cost | 2008 \$ Co | ost 2 | 2009 \$ Cost | | | | | Waste Dump A- 190 acres
area of top | 456,444 | | SY | | | | | | | | | | | | | | | | area of slope
scarify top (flat) area | 462,680 | 456,444 | SY | 0.20 | | 91,28 | 2 9 | 109,108 | \$ 113, | 10 6 | 114 200 | 6 417 | 000 | 6 404.74 | | | | | 12 inches soil on top of dump
12 inches soil on slope | | 152,148
154,227 | 3 CY | 1.25
1.25 | 9 | 190,18 | 5 \$ | 227,308
230,415 | \$ 235,6 | 44 \$ | 238,142 | \$ 117,
\$ 245,
\$ 249, | | \$ 121,74
\$ 253,62
\$ 257,09 | 7 | | | | seed entire surface Total-waste dump "A" reclamation | | 190 | acre | 174 | 9 | 33,06 | 0 \$ | 39,513
606,344 | \$ 40,9 | | 41,396 | \$ 42, | 721
572 | \$ 44,08 | В | 0 | | | Waste Dump B- 94 acres | | | | | | * p | | | - | | 000,244 | • 055, | 372 | 4 070,331 | 0 0 70 | | | | | 197,222
258,240 | 7.7 | SY | | | | | | | | | | | | | | | | scarify top (flat) area 12 inches soil on top of dump | | 197,222
65,741 | CY | 0.20
1.25 | \$ | 82,17 | 6 \$ | 47,143
98,216 | | | | \$ 50,8
\$ 106,1 | 971
190 | | | | | | 12 inches soil on slope
seed entire surface | | 86,080
94 | CY | 1.25
174 | \$ | | | 128,603
19,549 | | | | \$ 139,0
\$ 21,1 | 136 | \$ 143,493 | 3 | | | | Total-waste dump "B" reclamation | | | | | \$ | 245,57 | 6 \$ | 293,511 | | | | | | | | 130,998 | | | Waste Dump C- 120 acres area of the top | 344,222 | | 614 | | | | | | | | | | | | | | | | | 238,633 | 344,222 | SY
SY | 0.20 | s | 68.84 | | 82 282 | | | | | | | | | | | 12 inches soil on top of dump
12 inches soil on slope | | 114,741
79,544 | | 1.25
1.25 | \$ | 143,42 | 5 \$ | 82,282
171,422
118,838 | \$ 177,7 | 09 \$ | 179,592 | \$ 88,9
\$ 185,3 | 39 \$ | 191,270 |) | | | | seed entire surface
Total-waste dump "C" reclamation | | 120 | acre | 174 | \$ | 20,88 | 0 \$ | 24,956
397,498 | \$ 25,8 | 71 \$ | 26,145 | \$ 128,4
\$ 26,9
\$ 429,7 | 82 \$ | 27,845 | | 442.522 | | | | | | | | | | | 007,100 | 412,0 | ,,, | 410,444 | 420,7 | 70 4 | 443,323 | 100% | 443,523 | | | Rinse Heap- 12%of total ore neutralized; rin
time (2.5 lbs/ton)x(\$0.025/lb)x(5.9M ton) | nsing & evaporation | for 18 months
1,320,00 | 00 ton | 0.063 | \$ | 83,160 | \$ | 99,392 | \$ 103,0 | 38 \$ | 104,130 | \$ 107.4 | 62 \$ | 110,901 | | | | | abor, power & pump for draindown & evaporation for 18 months | | 1 | lot | 99,926 | \$ | | | 119,431 | \$ 123,8 | 11 \$ | 125,124 | \$ 129,1 | 28 \$ | | | | | | Subtotal for heap rinse & evaporation area of the top | 578,976 | | 014 | | \$ | 183,086 | \$ | 218,824 | \$ 226,8 | 49 \$ | 229,253 | \$ 236,5 | 90 \$ | 244,160 | 100% | 244.160 | | | area of the slope | 81,719
12 | 192,799 | SY
SY
CY | 2.50 | | 404 004 | | | | | 9- | | | | | | | | 12 inches clay cap on slope | 12 24 | 27,212
385,598 | CY | 2.50
2.50 | \$
\$ | 481,998
68,031
963,995 | \$ | 576,081
81,310 | | 92 \$ | 85,186 | \$ 87,9 | 12 \$ | 90,725 | | | | | 24 inch crushed rock on slope | 24
12 | 54,425
192,799 | CY | 2.50
1.25 | S | 136,062 | \$ | 162,621
288,041 | \$ 168,5 | 35 \$ | 1,207,077
170,372
301,769 | \$ 175,8 | 24 \$ | 181,450 | | | | | seed entire surface | 12 | 27,212
178 | CY
acre | 1.25
174 | \$ | 34,016
30,972 | \$ | | \$ 42,1 | 16 \$ | 42,593
38,782 | \$ 43,9 | 56 \$ | 45,362 | | | | | Subtotal- clay, crushed rock, soil & seeding | for leach pad | | | | \$ | 1,956,072 | | | | | | | | 2,608,581 | 100% | 2.608,581 | | | Reclamation of Miscellaneous Areas | | | | | | | | | | | | | | | | | | | affinate pond- 12 inches soil PLS pond- 12 inches soil | | 4,853
4,852 | CY | 1.25
1.25 | S | 6,065
6,065 | | | | 5 \$ | | | 37 \$ | | | | | | LS pond- 12 inches soil
vater runoff pond- 12 inches soil | | 4,852
4,852
8,229 | CY | 1.25
1.25
1.25 | \$ \$ | 6,065
6,065
10,286 | \$ | 7,436 | \$ 7,59 | | 7,837 | \$ 9,9 | 37 \$
16 \$ | 10,452 | | | | | eed 4 pond areas
otal-Pond Area reclamation | | 14 | acre | 174 | \$
\$ | 2,436
30,917 | \$ | 2,911 | \$ 12,74
\$ 3,0°
\$ 38,38 | 8 \$ | 3,050 | \$ 3,14 | 92 \$
48 \$ | 3,249 | 1008/ | 42 504 | | | Plant & Crusher Area- 25.5 Acres | | | | | | -0,017 | | 57,138 | 2 30,30 | 7 \$ | 38,956 | \$ 42,0 | 31 \$ | 43,594 | 100% | 43,594 | | | pply 12 inches soil
eed entire plant area | | 41,080
26 | CY | 1.25
174 | \$ | 51,350
4,437 | | | \$ 63,62
\$ 5,49 | | | \$ 66,35
\$ 5.75 | | | | | | | otal- Plant Area Reclamation | | | | | \$ | 55,787 | | | \$ 69,12 | | | \$ 72,09 | | | 100% | 74.397 | | | laul Roads- 40 Acres | | 192,889 | SY | 0.20 | \$ | 38,578 | | 46,108 | \$ 47,79 | 9 \$ | 48,306 | \$ 49,85 | 52 \$ | 51,447 | | | | | ontour
pply 12 inches soil | | 64,296
67,511 | CY | 1.25
1.25 | \$ | 80,370
84,389 | \$ | | \$ 99,58
\$ 104,56 | | 100,636
105,669 | | 57 \$ | | | | | | eed entire area
otal- Plant Reclamation Area | | 40 | acre | 174 | \$ | 6,960
210,297 | | | \$ 8,62
\$ 260,56 | | 8,715 | \$ 8,99
\$ 271,75 | 94 \$ | | 100% | 280,448 | | | ower Line Corridor- 64 Acres | No. | | | | | | | | | | | | | | | | | | note the power company has requested the
pen | line remain | 64 | acre | n/c | \$ | | | | | | | í., | | | | | | | eseed Soil Stockpile Areas- 40 Acres | | 40 | acre | 174 | KO, | 0.000 | | | | | | d de | t.d | | | | | | otal- Reseed Soil Stock Pile Areas | | 40 | acre | 174 | \$ | 6,960
6,960 | | | \$ 8,62
\$ 8,62 | | 8,715
8,715 | | | 9,282
9,282 | 33% | 3,063 | | | ences & Berms Around Open Pits | | 5,620 | LF | 3.02 | \$ | 16,972 | • | 20,285 | \$ 21,02 | 9 \$ | 24 252 | 24.02 | | 22.024 | | | | | nce around Sentinel Pit 2 | | 2,140
8,980 | LF | 3.02
3.02 | \$ | 6,463
27,120 | \$ | 7,725 | | B \$ | 21,252
8,093
33,959 | 8,35 | 2 \$ | 22,634
8,619
36,167 | | | | | nce around GTO Pit
otal - Pit Fences | | 7,410 | LF | 3.02 | \$ | 22,378
72,933 | \$ | | \$ 27,72 | 7 \$ | 28,021
91,324 | 28,91 | 8 \$ | 29,843
97,262 | 100% | 97.262 | | | urface Drainage Diversion Ditches | | | | | | | | | | | .,,,,, | | . , | 07,202 | | 01,202 | | | ach pad area
ant area | | 7,473
1,595 | CY | 1.25
1.25 | \$ | 9,341
1,994 | \$ | 11,164
2,383 | \$ 11,57
\$ 2,47 | | 11,696
2,497 | | | 12,457
2,659 | | | | | usher area | | 1,810
13,668 | CY | 1.25
1.25 | \$ | 2,263
17,085 | \$ | 20,420 | \$ 2,80
\$ 21,16 | \$ | 2,834
21,393 | 22,07 | | 3,018
22,784 | | | | | otal-Drainage Diversion Ditches | | | | | \$ | 30,683 | \$ | 36,672 | \$ 38,01 | \$ | 38,420 | 39,64 | 9 \$ | 40,918 | 75% | 30,689 | | | 2 inches soil on top | | 7,582
4.7 | CY | 1.25
174 | \$ | 9,478 | | 11,328 | | | 11,868 | | | 12,640 | | | | | otal-Drainage Diversion Ditches | | | acre | 1/4 | \$ | 818
10,296 | | 978
12,306 | \$ 1,01
\$ 12,75 | | 1,024 \$ | | | 1,091
13,731 | 100% | 13,731 | | | rill Pads and Boreholes
entennial Recess Drilling | | 23 | pads | 350 | | | | | | 8,05 | 50 \$ | 0.05 | | 8,689 | 10004 | 4.00 | | | ther Miscellaneous Areas | | 7 30 | pado | 000 | | | | | | 0,00 | 50 3 | 8,25 | 0 \$ | 8,689 | 100% | 8,689
50,000 | | | rect Costs | | | 41 | | | Silver. | 1 | | | | | | | | | 30,000 | | | obilization and Demobilization | | 1 | lot | 35,000 | \$ | 35,000 | \$ | 41,832 | \$ 43,366 | \$ | 43,826 \$ | 45,22 | 8 \$ | 46,675 | | 46,675 | | | | | combined total of | | | | | | | | | | | | | | | | | each Pad & Waste Dumps | | previous
items | | | \$ | 5,533,170 | \$ | 6,613,219 | 6,855,748 | \$ 6 | 5,928,419 \$ | 7,150,129 | 9 \$ | 7,378,933 | | 3,427,263 | | | | | combined total of | | | | | | | | | | | | | | | | | | | previous | | | \$ | 400,990 | \$ | 479.261 | 496.838 | s | 502,104 \$ | 518 17 | s | 534,753 | | 601,872 | | | sc. Surface Areas | | items | | | | | | | | | | 0.0, | , | 001,100 | | 001,072 | | | | | items | | | | | | | | ¢ 7 | 7,474,349 \$ | 7 713 528 | 3 \$ | 7,960,361 | | 4,075,810 | | | sc. Surface Areas | | items | | | \$ | 5,969,160 | \$ | 7,134,312 | 7,395,952 | 9 / | | 7,710,020 | | | | | | | | | items | | | \$ | 5,969,160 | 5 | 7,134,312 | 7,395,952 | * / | | 7,710,020 | _ | | | | | | tal Direct Costs Street Costs ant Dismantling | | items | lot | 450,000 | \$ | 450,000 | 9 | | 5 7,395,952
5 557,562 | | 563,472 \$ | | . \$ | 600,112 | | | | | tal Direct Costs Sirect Costs ant Dismantling sumes no salvage value | | | lot | 450,000 | | | 9 | | | | | | \$ | 600,112 | | | | | tal Direct Costs Illect Costs Int Dismantling sumes no salvage value agging monitoring wells vells, 500f | | 1 2,500 | If | 2.20 | \$ | 450,000
5,500 | s | 537,838 \$ | 5 557,562
6 6,815 | \$ | 563,472 \$
6,887 \$ | 581,504
7,107 | \$ | 7,335 | | | | | tal Direct Costs direct Costs and Dismantling sumes no salvage value ugging monitoring wells vells, 500ft | | 1 | if | 2.20
3.30 | \$ | 450,000
5,500
47,520 | \$ \$ \$ \$ | 537,838 \$ 6,574 \$ 56,796 \$ | 5 557,562
6 6,815
5 58,879 | \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ | 7,107
61,407 | \$ \$ | 7,335
63,372 | | | | | tal Direct Costs Street Costs ant Dismantling | | 1
2,500
14,400 | If | 2.20 | \$ \$ | 450,000
5,500 | \$ \$ \$ \$ | 537,838 \$ | 5 557,562
6 6,815
5 58,879 | \$ \$ | 563,472 \$
6,887 \$ | 7,107
61,407 | \$ \$ | 7,335 | | | | | dal Direct Costs direct Costs ant Dismantling sumes no salvage value agging monitoring wells vels, 500t vels 1,200t gineering-5% of total direct costs | | 1
2,500
14,400 | if | 2.20
3.30 | \$ \$ | 450,000
5,500
47,520 | \$
\$
\$
\$ | 537,838 \$ 6,574 \$ 56,796 \$ | 5 557,562
6 6,815
5 58,879
6 369,798 | \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ | 7,107
61,407 | \$ \$ | 7,335
63,372 | | | | | tal Direct Costs Illrect Costs Int Dismantling Jumes no salvage value Jume | | 1
2,500
14,400 | if
if
lot | 2.20
3.30
298,458 | \$ \$ \$ | 450,000
5,500
47,520
298,458 | \$ \$ \$ \$ \$ | 537,838 \$ 6,574 \$ 56,796 \$ 356,716 \$ | 5 557,562
6 6,815
6 58,879
6 369,798 | \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ | 7,107
61,407
385,676 | \$ \$ \$ \$ \$ | 7,335
63,372
398,018 | | | | | tal Direct Costs Sirect Costs ant Dismantling sumes no salvage value agging monitoring wells veils ,200t veils 1,200t gineering- 5% of total direct costs weres Cost- OMITTED | | 1
2,500
14,400
1 | If If lot sample | 2.20
3.30
298,458 | \$
\$
\$
\$ | 450,000
5,500
47,520
298,458
55,000 | \$
\$
\$
\$
\$ | 537,838 \$ 6,574 \$ 56,796 \$ 356,716 \$ | 5 557,562
5 6,815
5 58,879
6 369,798
6 68,146
6 30,976 | \$
\$
\$
\$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ | 7,107
61,407
385,676
71,073 | \$ \$ | 7,335
63,372
398,018 | | | | | tal Direct Costs direct Costs ant Dismantling sumes no salvage value agging monitoring wells velis, 500t gineering-5% of total direct costs wers Cost-OMITTED atter Quality Monitoring for 11 wells vegetation monitoring for 5 years | | 1
2,500
14,400
1
110
5 | If If In Int Int Int Int Int Int Int Int Int | 2.20
3.30
298,458
500
5,000 | \$
\$
\$
\$ | 450,000
5,500
47,520
298,458
55,000
25,000 | \$
\$
\$
\$
\$ | 537,838 1
6,574 1
56,796 1
356,716 1
65,736 1
29,880 1
215,373 1
713,431 1 | 5 557,562
6 6,815
6 58,879
6 68,146
6 30,976
223,271
739,595 | \$ \$ \$ \$ \$ \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ 31,304 \$ 225,638 \$ 747,435 \$ | 7,107
61,407
385,676
71,073
32,306
232,859 | \$ \$ \$ | 7,335
63,372
398,018
73,347
33,340 | | | | | tal Direct Costs Int Dismantling sumes no salvage value ugging monitoring wells vells 1,200ft gineering- 5% of total direct costs wers Cost- OMITTED ater Quality Monitoring for 11 wells vegetation monitoring for 5 years | | 1
2,500
14,400
1
110
5 | If If Iot sample year lot | 2.20
3.30
298,458
500
5,000
180,199 | \$ \$ \$ \$ \$ \$ \$ \$ | 450,000
5,500
47,520
298,458
55,000
25,000
180,199 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 537,838 \$ 6,574 \$ 56,796 \$ 356,716 \$ 65,736 \$ 29,880 \$ 215,373 \$ | 6,815
6,815
6,879
6,369,798
6,146
6,30,976
223,271
739,595 | \$ \$ \$ \$ \$ \$ \$ \$ | 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ 31,304 \$ 225,638 \$ 747,435 \$ | 7,107
61,407
385,676
71,073
32,306
232,859
771,353 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 7,335
63,372
398,018
73,347
33,340
240,310
796,036 | | 1,132,506 | | | tal Direct Costs direct Costs ant Dismantling sumes no salvage value ugging monitoring wells vells, 500ft vells 1,200ft gineering-5% of total direct costs overs Cost- OMITTED ster Quality Monitoring for 11 wells vegetation monitoring for 5 years instruction management ntingency (10% of Total Direct Costs) tal Indirect Costs | | 1
2,500
14,400
1
110
5 | If If Iot sample year lot | 2.20
3.30
298,458
500
5,000
180,199 | \$ | 450,000
5,500
47,520
298,458
55,000
25,000
180,199
596,916
,658,593 | \$ | 537,838 1 6,574 1 56,796 1 356,716 1 29,880 1 215,373 1 713,431 1 1,982,342 1 1 | 5 557,562
6 6,815
5 58,879
3 369,798
6 8,146
3 30,976
223,271
7 39,595
2,055,042 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ 31,304 \$ 225,638 \$ 747,435 \$ 5,076,825 \$ | 71,073 32,306 232,859 771,353 2,143,284 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 7,335
63,372
398,018
73,347
33,340
240,310
796,036
2,211,869 | | | | | tal Direct Costs Illect Costs Int Dismantling sumes no salvage value tigging monitoring wells tivels, 500t tivels 1,200ft glineering- 5% of total direct costs orders Cost- OMITTED ter Quality Monitoring for 11 wells tivegetation monitoring for 5 years instruction management intingency (10% of Total Direct Costs) tal indirect Costs | | 1
2,500
14,400
1
110
5 | If If Iot sample year lot | 2.20
3.30
298,458
500
5,000
180,199 | \$ | 450,000
5,500
47,520
298,458
55,000
25,000
180,199
596,916 | \$ | 537,838 \$ 6,574 \$ 56,796 \$ 356,716 \$ 65,736 \$ 29,880 \$ 215,373 \$ 713,431 \$ | 5 557,562
6 6,815
5 58,879
3 369,798
6 8,146
3 30,976
223,271
7 39,595
2,055,042 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ 31,304 \$ 225,638 \$ 747,435 \$ 5,076,825 \$ | 71,073 32,306 232,859 771,353 2,143,284 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 7,335
63,372
398,018
73,347
33,340
240,310
796,036
2,211,869 | | 5,208,316 | 5,208, | | tal Direct Costs Illect Costs Int Dismantling sumes no salvage value tigging monitoring wells tivels, 500t tivels 1,200ft glineering- 5% of total direct costs orders Cost- OMITTED ter Quality Monitoring for 11 wells tivegetation monitoring for 5 years instruction management intingency (10% of Total Direct Costs) tal indirect Costs | | 1
2,500
14,400
1
110
5 | If If Iot sample year lot | 2.20
3.30
296,458
500
5,000
180,199
596,916 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 450,000
5,500
47,520
298,458
55,000
25,000
180,199
596,916
,658,593
,627,753 | \$ | 537,838 1 6,574 1 56,796 1 356,716 1 29,880 1 215,373 1 713,431 1 1,982,342 1 1 | 5 557,562
6 6,815
5 58,879
3 369,798
6 8,146
3 30,976
223,271
7 39,595
2,055,042 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ 31,304 \$ 225,638 \$ 747,435 \$ 5,076,825 \$ | 71,073 32,306 232,859 771,353 2,143,284 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 7,335
63,372
398,018
73,347
33,340
240,310
796,036
2,211,869 | | 5,208,316
Existing Bond | 6,076, | | tal Direct Costs direct Costs ant Dismantling sumes no salvage value agging monitoring wells vells 1,200t glineering- 5% of total direct costs wers Cost- OMITTED ster Quality Monitoring for 11 wells vegetation monitoring for 5 years instruction management ntingency (10% of Total Direct Costs) | | 1
2,500
14,400
1
110
5 | If If Iot sample year lot | 2.20
3.30
298,458
500
5,000
180,199
596,916 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 450,000
5,500
47,520
298,458
55,000
25,000
180,199
596,916
,658,593
,627,753 | \$ | 537,838 1 6,574 1 56,796 1 356,716 1 29,880 1 215,373 1 713,431 1 1,982,342 1 1 | 5 557,562
6 6,815
5 58,879
3 369,798
6 8,146
3 30,976
223,271
7 39,595
2,055,042 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ 31,304 \$ 225,638 \$ 747,435 \$ 5,076,825 \$ | 71,073 32,306 232,859 771,353 2,143,284 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 7,335
63,372
398,018
73,347
33,340
240,310
796,036
2,211,869 | | 5,208,316 | - 2 1 | | tal Direct Costs direct Costs ant Dismantling sumes no salvage value ugging monitoring wells vells, 500ft vells 1,200ft gineering-5% of total direct costs overs Cost- OMITTED ster Quality Monitoring for 11 wells vegetation monitoring for 5 years instruction management ntingency (10% of Total Direct Costs) tal Indirect Costs | | 1
2,500
14,400
1
110
5 | If If Iot sample year lot | 2.20
3.30
298,458
500
5,000
180,199
596,916
Escalation
0
1998 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 5,500
47,520
298,458
55,000
180,199
596,916
,658,593
(25,8%/s)
627,753 | \$ | 537,838 1 6,574 1 56,796 1 356,716 1 29,880 1 215,373 1 713,431 1 1,982,342 1 1 | 5 557,562
6 6,815
5 58,879
3 369,798
6 8,146
3 30,976
223,271
7 39,595
2,055,042 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ 31,304 \$ 225,638 \$ 747,435 \$ 5,076,825 \$ | 71,073 32,306 232,859 771,353 2,143,284 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 7,335
63,372
398,018
73,347
33,340
240,310
796,036
2,211,869 | | 5,208,316
Existing Bond | 6,076, | | tal Direct Costs direct Costs ant Dismantling sumes no salvage value ugging monitoring wells vells, 500ft vells 1,200ft gineering-5% of total direct costs overs Cost- OMITTED ster Quality Monitoring for 11 wells vegetation monitoring for 5 years instruction management ntingency (10% of Total Direct Costs) tal Indirect Costs | | 1
2,500
14,400
1
110
5 | If If Iot sample year lot | 2.20
3.30
298,458
500
5,000
180,199
596,916
Escalation
0
1998
1999
2000 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 450,000
5,500
47,520
298,458
55,000
180,199
596,916
,658,593
627,753
**(2.58%))
627,753 | \$ | 537,838 1 6,574 1 56,796 1 356,716 1 29,880 1 215,373 1 713,431 1 1,982,342 1 1 | 5 557,562
6 6,815
5 58,879
3 369,798
6 8,146
3 30,976
223,271
7 39,595
2,055,042 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ 31,304 \$ 225,638 \$ 747,435 \$ 5,076,825 \$ | 71,073 32,306 232,859 771,353 2,143,284 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 7,335
63,372
398,018
73,347
33,340
240,310
796,036
2,211,869 | | 5,208,316
Existing Bond | 6,076 | | tal Direct Costs direct Costs ant Dismantling sumes no salvage value ugging monitoring wells vells, 500ft vells 1,200ft gineering-5% of total direct costs overs Cost- OMITTED ster Quality Monitoring for 11 wells vegetation monitoring for 5 years instruction management ntingency (10% of Total Direct Costs) tal Indirect Costs | | 1
2,500
14,400
1
110
5 | If If Iot sample year lot | 2.20
3.30
298,458
500
5,000
180,199
596,916
Escalation
0
1998
1999
2000
2001
2002
2003 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 450,000 5,500 47,520 298,458 55,000 180,199 596,916 658,593 627,753 • (2.58%) 941 7726 553 | \$ | 537,838 1 6,574 1 56,796 1 356,716 1 29,880 1 215,373 1 713,431 1 1,982,342 1 1 | 5 557,562
6 6,815
5 58,879
3 369,798
6 8,146
3 30,976
223,271
7 39,595
2,055,042 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ 31,304 \$ 225,638 \$ 747,435 \$ 5,076,825 \$ | 71,073 32,306 232,859 771,353 2,143,284 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 7,335
63,372
398,018
73,347
33,340
240,310
796,036
2,211,869 | | 5,208,316
Existing Bond | 6,076, | | tal Direct Costs direct Costs ant Dismantling sumes no salvage value ugging monitoring wells vells, 500ft vells 1,200ft gineering-5% of total direct costs overs Cost- OMITTED ster Quality Monitoring for 11 wells vegetation monitoring for 5 years instruction management ntingency (10% of Total Direct Costs) tal Indirect Costs | | 1
2,500
14,400
1
110
5 | If If Iot sample year lot | 2.20
3.30
298,458
500
5,000
180,199
596,916
Escalation
0
1999
2000
2001
2002
2003
2004
2005 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 450,000 5,500 47,520 298,458 55,000 180,199 596,916 658,593 627,753 e (2.58%) 941 726 553 5513 5520 603 | \$ | 537,838 1 6,574 1 56,796 1 356,716 1 29,880 1 215,373 1 713,431 1 1,982,342 1 1 | 5 557,562
6 6,815
5 58,879
3 369,798
6 8,146
3 30,976
223,271
7 39,595
2,055,042 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ 31,304 \$ 225,638 \$ 747,435 \$ 5,076,825 \$ | 71,073 32,306 232,859 771,353 2,143,284 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 7,335
63,372
398,018
73,347
33,340
240,310
796,036
2,211,869 | | 5,208,316
Existing Bond | 6,076, | | al Direct Costs Irect Costs It Dismantling umes no salvage value gging monitoring wells ells ,500ft ells 1,200ft jineering- 5% of total direct costs mers Cost- OMITTED ter Quality Monitoring for 11 wells regetation monitoring for 5 years astruction management stringency (10% of Total Direct Costs) al indirect Costs | | 1
2,500
14,400
1
110
5 | If If Iot sample year lot | 2.20
3.30
298,458
500
5,000
180,199
596,916
Escalation
0
1998
1999
2000
2001
2002
2003
2004 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 450,000 5,500 47,520 298,458 55,000 180,199 596,916 ,658,593 627,753 **(2.58%) 900 627,753 **(2.58%) 913 627,753 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 537,838 \$ 6,574 \$ 56,796 \$ 356,716 \$ 65,736 \$ 29,880 \$ 215,373 \$ 713,431 \$ 1,982,342 \$ 9,116,654 \$ | 5 557,562
6 6,815
5 58,879
3 369,798
6 8,146
3 30,976
223,271
7 39,595
2,055,042 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 563,472 \$ 6,887 \$ 59,503 \$ 373,717 \$ 68,869 \$ 31,304 \$ 225,638 \$ 747,435 \$ 5,076,825 \$ | 71,073 32,306 232,859 771,353 2,143,284 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 7,335
63,372
398,018
73,347
33,340
240,310
796,036
2,211,869 | | 5,208,316
Existing Bond | 6,076 |